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Abstract We investigate discrete structures and combinatoric modeling of weighted
prefix trees for managing and analyzing DNA microarray data. We describe the
algorithms to construct the weighted trees for these data. Using these weighted trees
with our algorithms, we propose methods to compute the appearance probability of a
DNA microarray, to compare the informational distances in the expression of genes
between the DNA microarrays, to search the characteristic microarrays and the group
of candidate genes suggestive of a pathology.

Keywords Combinatorics on words · Weighted automata · Weighted trees ·
Classification · DNA microarrays.

1 Introduction

DNA microarray, or DNA chip, is a technology used to measure simultaneously the
expression levels of thousands of genes under various conditions and then provide
genome-wide insight. It is used to collect information from tissue and cell samples to
observe differences in gene expression. The interpretation of the results requires new
methods and software programs to capture the biological or medical information and
to extract new knowledge from the microarray data.

There exist already several statistical methods and software programs to analyze
the microarrays. Examples include (1) Unsupervised learning methods: hierarchical
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clustering and k-means clustering algorithms based on distance similarity metrics
[7,11]; these are used to search for genes with maximum similarity. (2) Supervised
learning methods: support vector machine approaches based on kernel function [9],
machine learning classifiers and the Bayesian naive approach based on maximum
likelihood method [3,16]; these are used to classify the gene expression into a training
set. These methods are based essentially on numerical algorithms and do not really
require structured data.

In this paper, we introduce combinatoric methods and nonnumerical algorithms,
based on weighted prefix trees, to analyze microarray data, i.e:

– defining the informational distances to compare different microarrays,
– classifying the microarrays into the different categories,
– searching the characteristic microarrays,
– determining the group of candidate genes suggestive of a pathology.

The key to understanding our approach is that the information on gene expression
in a microarray may be represented by a finite symbolic sequence, and a collection of
microarrays may be viewed as a finite multiset of words, which can be implemented
by using weighted prefix trees.

Prefix trees have been used to manipulate enormous masses of strings as a dictio-
nary. These trees are used to distinguish all words of a multiset of words according
to their prefixes, to search the frequency of patterns in a random text, to identify a
sub-string in a word, etc... [10,14,15]. These prefix trees are viewed also as acyclic au-
tomata, and thus they can be represented by a matrix representation with coefficients
in a Boolean ring [1,2,12].

To facilitate the probability and statistical computations, we enriched the data
structure of prefix trees by introducing trees of longest prefixes, and by using counting
trees labelled by an integer, and probabilistic trees labelled by maximum likelihood
probability. This probability is, in fact, a frequency. Thus, to limit the propagation
of numerical errors, the probability and statistical computations may be performed
simply using only arithmetic operations on integers. When weighted trees are viewed
as weighted automata without loops and this time, they are represented by a ma-
trix representation with integer coefficients or with maximum likelihood probability
coefficients. Using this representation of weighted automata, computations are done
simply by using linear algebra. Further, following this representation, we could exploit
other advantages of weighted automata as the reduction algorithm [2,4] to compress
the data in our future work.

The weighted prefix trees provide a visual of a set of data and also are tools
to classify the mass of data according to the weight of their prefixes. Thus, these
structures open a new direction to examine the data-mining step in the process of
knowledge discovery in databases. In other words, they permit the extraction of new
information and hidden information from the mass of data. They also address the
automatic learning and pattern recognition problems. More precisely, in this work we
examine the following questions related to DNA microarray data.

1. Given some observed output strings L on an alphabet X, how do we construct the
weighted prefix trees over L?

2. How do we calculate the appearance probability of a string of L?
3. How do we compare the information between different strings? This is most

efficiently done by classifying the degree of overlap between different strings.
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4. What are the sequences of nodes constituting the strings having the highest
probability? This is most efficiently done by finding the sequence of nodes consti-
tuting the characteristic strings with the maximum frequency.

5. How do we find a transformation of L to obtain a multiset of words having longest
prefixes and maximal probabilistic prefix? This is most efficiently done by finding
the permutations of sequences giving the longest prefix.

This paper is organized as follows. The next section presents the elements of words,
the concepts of multiset of words and permutations. Section 3 introduces the algorithm
to construct a weighted tree and its matrix representation. Section 4 describes the
application of weighted trees for the management and analysis of DNA microarray
data.

2 Words and multiset of words

2.1 Words and precoding of words

Let X = {x1, . . . , xm} be an alphabet of the size m. A word w is a sequence of elements
of X. The length of w is |w|. A particular case is the empty word that contains no
letter, denoted by ε, |ε| = 0. The set of all words over X is denoted by X∗. We can then
express also (see [4,14])

X+ = X∗ \ {ε} and for any h ≥ 0 Xh = {w ∈ X∗, s.t. |w| = h}. (1)

Example 1 Let X1 = {+, ◦,−} be an alphabet. Words constructed over X1 are {+ −
◦ ◦ +,+ ◦ + ◦ ◦,+ ◦ +−−+ ◦, ...}. Let X2 = {A, C, G, T}, words constructed over X2
are {ACGT, AATTACG, ATCTTTGACC, ...}.

The concatenation of word u = xi1 . . . xik and v = xj1 . . . xjl is the word w = uv =
xi1 . . . xik xj1 . . . xjl . Equipped with the concatenation product, X∗ is a monoid whose
neutral element is the empty word ε.

A word u (resp. v) is called prefix, or left factor (resp. suffix, or right factor) of w if
w = uv. For any u, v ∈ X∗, let a be the longest prefix (longest left factor) of u and v, i.e
u = au′ and v = av′. Let1

d(u, v) = |a| = d(v, u) and d(u, v) = 0 if a = ε. (2)

Example 2 d(+−◦◦+,−◦+◦◦) = |ε| = 0, d(+◦+◦◦,+◦+−−+◦) = |+◦+| = 3.

For xi ∈ X, let precod(xi) = i be the precoding of xi, for i = 1, .., m. The precoding
precod(w) of w in base m (the cardinality of X) is defined as

precod(w) =
{

0 if w = ε,
m precod(u)+ precod(x), if w = ux,∀u ∈ X∗, x ∈ X.

(3)

Example 3 Let X = {+, ◦,−} be an alphabet and let

precod(+) = 1, precod(◦) = 2, precod(−) = 3,

thus one has precod(++) = 3 precod(+) + precod(+) = 4 and
precod(++−) = 3 precod(++)+ precod(−) = 15.

1 With this definition d is not a distance.
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2.2 Languages

Let L be a finite multiset of words containing N words over X∗, for N ≫ 0. For
u ∈ X∗, let us consider

Nu = Card{w ∈ L|∃v ∈ X∗, w = uv}, in particular Nε = N. (4)

The Nu is the number of words beginning with u. Thus, ∀u ∈ Xh, one has

Nu =
∑
x∈X

Nux and for any 0 ≤ h ≤ L, N =
∑

u∈Xh

Nu. (5)

The mass function µ over L is defined as follows

µ : L −→ N,

u = xi1 . . . xih 
−→ µ(u) =
h∏

l=1

Nxil
. (6)

For u ∈ X∗, let us consider also the following ratios

Pu = Nu

N
, in particular Pε = 1. (7)

For u ∈ X∗, xi ∈ X, to simplify the notation, let

p = precod(u), qi = precod(uxi) = mp+ precod(xi). (8)

and we consider the ratios

Pp,qi =
Nuxi

Nu
, for i = 1, .., m. (9)

By the formula (5), since
∑

xi∈X Nuxi = Nu then the ratios Pp,qi define the discrete
probability over X∗:

0 ≤ Pp,qi ≤ 1 and for all u ∈ X∗,
∑
xi∈X

Pp,qi = 1. (10)

For u = xi1 . . . xih ∈ Xh, the appearance probability of u is computed by

Pu =
h∏

l=1

Pqil−1 ,qil
. (11)

Note that ∑
w∈L

Pw = 1 and for any 0 ≤ h ≤ L,
∑

u∈Xh

Pu = 1. (12)

Using the notation (9), for u = xi1 . . . xih , the entropy of u is computed by

H(u) = −
h∑

l=1

Pqil−1 ,qil
log2 Pqil−1 ,qil

. (13)
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Example 4 Let

L = {+ −+,++ ◦ ◦ −,++ ◦ −−,++ ◦,+−+◦,+−+◦,++ ◦◦,++}
be the multiset of 8 words over X = {+, ◦,−}. By using the notation (4,5), we have
N+ = 8, N++ = 5 and N++◦ = 4. Thus by (6), µ(++) = N+ × N++ = 40 and
µ(+ + ◦) = N+ × N++ × N++◦ = 160. By using the notation (9), we have P0,1 =
N+
Nε
= 1, P1,4 = N++

N+ = 5
8 , P1,6 = N+−

N+ = 3
8 and P4,14 = N++◦

N++ = 4
5 , thus P1,4 + P1,6 = 1.

By (11), P++◦ = P0,1P1,4P4,14 = 1
2 . And by using the notation (13), H(+ + ◦) =

−(P0,1 log2 P0,1 + P1,4 log2 P1,4 + P4,14 log2 P4,14) ≈ 0.68.

2.3 Rearrangement of multiset of words

Let L = {w1, . . . , wN} be the finite multiset of words such that |wi| = L, for i =
1, .., N. Let SL denote the set of permutations over [1, . . . , L]. Let σ ∈ SL and let
w = xi1 . . . xiL . Then

σw = xσ(i1) . . . xσ(iL). (14)

We extend this definition over L as follows

σL = {σw}w∈L. (15)

There always exists a permutation σ ∈ SL such that σw1 = av1, . . . , σwN = avN ,
where v1, . . . , vN ∈ X∗ and a is the left longest factor of L. This permutation is not
unique.

Example 5 Let L =
⎧⎨
⎩
++−◦
◦ + +◦
− ++◦

⎫⎬
⎭ and σ =

(
1 2 3 4
3 2 1 4

)
. Then σL =

⎧⎨
⎩
−++◦
++ ◦ ◦
+ +−◦

⎫⎬
⎭. Let

σ1 =
(

1 2 3 4
4 2 3 1

)
and σ2 =

(
1 2 3 4
2 4 1 3

)
. Then σ1L and σ2L have the same longest prefix

|◦+| = |+◦| = 2.

We propose the REARRANGEMENT (L) algorithm as follows: for h ≤ L and
for x ∈ X, let nh(x) be the number of letters x in the position h of the words in L and
let nh be the maximum of nh(x), x ∈ X,

nh = max
x∈X nh(x), and

∑
x∈X

nh(x) = N. (16)

w

w 1
xihhposition 

w
2

k
wN

1
L

⇒

1 a
1

2w =  v
k

l

N

w =  v

a
a
a

a
a

L
w =  v

w =  v
w =  v

v

v1

l

vN

1

2

k

l

N

One rearranges, then, the numbers n1, . . . , nL such that they appear in descending
order nσ(1) ≥ · · · ≥ nσ(L) by sorting algorithm [15]. We return the permutation
σ = [σ(1), . . . , σ(L)].
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Example 6 With the multiset of words L in Example 5, one has

n2(+) = n4(◦) = 3 > n3(+) = 2 > n1(+) = n1(◦) = n1(−) = 1,

so one permutes the position 1 and the position 4 of multiset of words L. One obtains

σ =
(

1 2 3 4
4 2 3 1

)
and σL =

⎧⎨
⎩
◦ + −+
◦ ++ ◦
◦ + +−

⎫⎬
⎭. One has a = ◦+ as a longest common prefix

of L.

Algorithm 1 REARRANGEMENT (L)

1: Input: a multiset of words L;
2: for h = 1 to L do
3: count nh(x), x ∈ X;
4: determine nh = max

x∈X nh(x);

5: store {nh}1≤h≤L;
6: end for
7: rearrangement nσ(1) ≥ · · · ≥ nσ(L);
8: return σ = [σ(1), . . . , σ(L)];
9: L← σL;

10: a← ε;
11: for h = 1 to L do
12: if exist x ∈ X s.t nh(x) = N then
13: a← ax;
14: end if
15: end for
16: Output: return σ = [σ(1), . . . , σ(L)] with longest prefix a;

The advantage of the permutation of a multiset of words is that it increases the
length of common prefix between words but the appearance probability of words does
not change, where

Theorem 1 Let us suppose that there exists a permutation σ such that σ(L) has the
longest prefix. Thus,

∀w ∈ L, Pw = Pσw.

Property 1 Let σ be the permutation given in Algorithm 1. For any w ∈ L, if there
exists u, ū ∈ Xh such that w = uv and σw = ūv̄. Then

1. µ(ū) ≥ µ(u),
2. Pū ≥ Pu,
3. d(σu, σv) ≥ d(u, v),∀u, v ∈ L.

To evaluate the change between the multiset of words L and σL according to their
prefixes, we propose to use the following informational distance.

Proposition 1 With the notations (6,9,13), the semi-distances between multiset of words
L and σL are defined on l1 space as

dµ(σL, L) = ‖µσL − µL‖1 =
∑

ū,u∈Xh

|µ(ū)− µ(u)|,

dP(σL, L) = ‖PσL − PL‖1 =
∑

ū,u∈Xh

|Pū − Pu|,

dH(σL, L) = ‖HσL −HL‖1 =
∑

ū,u∈Xh

|H(ū)−H(u)|.
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3 Weighted prefix trees

This section introduces the weighted prefix trees which include counting trees and
probabilistic trees. A counting tree is a data structure that classifies a set of words
according to their successive symbols and their occurrence number. By using the
maximum likelihood method, one obtains a probabilistic tree.

3.1 Prefix trees

Let L ⊆ X∗ be a nonempty multiset of words and not containing the empty word ε.
The prefix tree A(L) associated to the finite multiset of words L is usually used to
optimize the storage of multiset of words L and defined as follows [10]

– the root is the initial node which contains the empty word ε,
– the set of the nodes corresponds to the prefixes of L,
– the set of the terminal nodes represents L,
– the transitions have the form (p, x, q) i.e: for x ∈ X, u ∈ X∗,

p = precod(u)
x−−−→ q = precod(ux). (17)

To enumerate the nodes of trees, we use the precoding of words defined in (8).
The internal nodes p = precod(u) associated to prefix u are nodes such that Nu ≥
2 and the simple internal nodes q are nodes such that Nu = 1. Thus an internal
node p corresponds to a common prefix of all words stored in sub-tree of root p
(see Fig. 1a). The prefix tree structure has been used to store enormous masses of
words such as in a dictionary, to differentiate the words according to their prefixes, to
search the frequency of patterns in a random text, to identify a sub-string in a text,
etc.. [6,10,14,15,21]. There are several parameters which permit the analysis of the
behavior of algorithms using this type of structure:

1. The size S(A(L)) is the sum of the number of internal nodes and the number of
simple internal nodes. This parameter is the size of the necessary memory storage,

S(A(L)) =
∑

u∈X∗
1{Nu≥2} +

∑
u∈X∗

1{Nu=1}, (18)

where 1{Nu≥2} and 1{Nu=1} are the indication functions over set of nodes.

a) b) c)

Fig. 1 Structure of the trees associated to a multiset of words L
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2. The height of the prefix tree, denoted H(L), is the maximum longest prefix d(u, v)

among all longest prefixes of L. This is the maximum number of necessary com-
parisons to separate two words,

H(L) = max
u,v∈L d(u, v). (19)

3. The length of path LP(L) is the sum of all the longest prefixes d(u, v). This para-
meter measures the number of necessary comparisons to construct the prefix trees
and analyze the cost of the search algorithm,

LP(L) =
∑

u,v∈L
d(u, v). (20)

3.2 Counting trees

Let L be a finite multiset of words. Equipped with the number Nux defined in (4,5), the
prefix tree A(L) becomes a counting tree (see Fig. 1b). According to the notation (8)
and the definition of the prefix tree, from an internal node p = precod(u) associated
with a sub-tree with p as a root which composes Nu words starting with the same prefix
u. Then, the counting tree of L is constructed by INSERT (L, A) algorithm as follows:
Denote Succ[p] the implementation of the set of the labeled successors of the node
p. The construction algorithm of a counting tree is presented below; it is a modified
version of that cited by Crochemore [10]. It considers successively each word of L in
the loop of the lines 4 – 20, inserts it within the structure in sequential construction,
letter by letter during the execution, and increases the number of labeled occurrences
calculated on the lines 9 – 12. This algorithm permits one to manipulate any multiset
of words to obtain a counting tree. By this construction, the transitions between the
nodes on a counting tree have the form (p, (x, Nux), q), i.e:

p = precod(u)
x,Nux−−−−−−→ q = precod(ux). (21)

Proposition 2 The construction time of a counting tree of N words is O(N).

The advantage of the structure of prefix trees is that they distinguish all words
of a multiset of words uniquely according to their prefixes. When we use counting
trees, the weight of the common prefixes will be computed by (6). It permits the com-
parison of all words of L according to the weight of their prefixes. We propose the
CHARACTERISTIC-WORDS (A(L)) algorithm, which returns the words having
the maximum number of occurences, to extract characteristic words. By starting from
the root of the tree and by descending sequentially, at each node p, the maximum
product of Nux will be used to determine the paths of nodes which gives the charac-
teristic words. In other words, the choice of symbol x corresponding to the maximum
weight NuNux determines the paths to follow,

x̂ = arg max
x

(NuNux), (22)

where arg maxx Nx return a value x (not unique) which maximizes Nx.

Proposition 3 The algorithm CHARACTERISTIC-WORDS has a complexity in
O(L) with L is the height of counting tree.
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Algorithm 2 INSERT (L, A)

1: Input: a list of words L;
2: A← new-tree();
3: Nε ← 0;
4: while L �= ∅ do
5: w← first(L);
6: L←remainder(L);
7: p← root;
8: Nε ← Nε + 1;
9: for each letter x of w sequentially do

10: if exists a node q such that (x, q) ∈ Succ[p] then
11: Nux ← Nux + 1;
12: p← q;
13: else
14: q← new-node();
15: Succ[p] ← Succ[p] ∪ {(x, q)};
16: Nux ← 1;
17: p← q;
18: end if
19: end for
20: end while
21: Output: a counting tree A(L);

Algorithm 3 CHARACTERISTIC-WORDS (A(L))

1: Input: A(L);
2: p← root; u← ε;
3: while p �= NULL do
4: for x1 to xm outgoing of the node p do
5: x← argmax

xk
(NuNuxk ), 1 ≤ k ≤ m;

6: u← ux;
7: end for
8: p← precod(u);
9: end while

10: Output: the words u with maximal occurrence numbers;

3.3 Probabilistic trees

To compute the appearance probability of an output word over an alphabet X, we
introduce the probabilistic tree. A probabilistic tree is a modified counting tree. Aug-
mented with the probability Pp,q defined in (9), the counting tree A(L) becomes a
probabilistic tree (see Fig. 1c). The labeled probability is estimated by the maximum
likelihood method (see the notations (7,9)). It is the conditional probability that the
word w accepts the common prefix ux knowing the common prefix u. The transi-
tions between the nodes on a probabilistic tree have the form (p, (x, Pp,q), q), i.e:
for any x ∈ X, u ∈ X∗,

p = precod(u)
x,Pp,q−−−−−−→ q = precod(ux). (23)

According to the construction of probabilistic trees, the appearance probability of a
word is computed by (11).

Example 7 Let L = {+−+◦,++◦◦,++◦◦,++◦◦,+−+◦,+−+◦,++◦◦,++−◦}
be the multiset of words over {+, ◦,−}, we have the weighted trees as below:
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a) b) c)

Fig. 2 Weighted trees associated to L. The sequence of nodes 0→ 1→ 4→ 14→ 44 represents the
characteristic word

3.4 Matrix representation of weighted trees

Let L = {w1, . . . , wN} be a finite multiset of words such that |wi| = L, for any
i = 1, . . . , N. The prefix tree associated to L can be viewed as the finite acyclic
automaton of size n ≤ mL. Thus, it can be represented by a matrix representation with
coefficients in a Boolean ring [1,2,8,12]. Using the notations (4,5,9), we introduced the
methods to construct weighted trees (counting trees and probabilistic trees) to enrich
the structure of prefix trees. Weighted trees are viewed as finite weighted automata. In
this manner, we get a weighted tree with a modified algebraic structure of a weighted
automaton that can be represented as follows.

Definition 1 (Matrix representation of prefix trees)
Let K be the Boolean ring. The prefix tree A(L) associated with the finite multiset of
words L over X is given by the triplet (λ, M, γ ), where

i. λ = (1, 0, . . . , 0) ∈M1,n(K). The row vector λ represents the initial node (the root
of the prefix tree),

ii. γ = (
γi

)
1≤i≤n ∈Mn,1(K) such that,

γi =
{

1 if ∃w ∈ L such that i = precod(w),
0 otherwise.

This column vector γ represents the set of the final nodes of the tree,
iii. M is a morphism of monoids representing of X in the monoid of the square

matrices of dimension n over K,

M : X −→Mn,n(K)

x 
−→ M(x).

For any x ∈ X, the coefficient of matrix M(x) is given by

Mi,j(x) =
{

1 if ∃u ∈ X∗ s.t. i = precod(u) and j = mi+ precod(x),
0 otherwise.

The matrix M(x) represents the transition of letter x on the prefix tree.
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The triplet (λ, M, γ ) is called the K-matrix representation of dimension n of prefix
tree A(L).

Property 2 The matrices M(x), x ∈ X, are triangular with diagonal elements of zero.

Property 3 For any w = xi1 . . . xxL ∈ X∗, one has M(w) =M(xi1) . . . M(xxL).

Property 4 For any u, v ∈ X∗, one has M(uv) =M(u)M(v).

Property 5 Let (λ, M, γ ) be the matrix representation of the prefix tree A(L) associated
to the finite multiset of words L. Then

∀w ∈ X∗, λM(w)γ =
{

1 if and only if w ∈ L,
0 otherwise.

Definition 2 (Matrix representation of counting trees)
Let K = N. The counting tree A(L) associated with the finite multiset of words L is
the given of the triplet (λ, C, γ ), where λ and γ are already given in Definition 1 and
by the notations (4,5), the morphism C is given by

Ci,j(x) =
{

Nux if ∃u ∈ X∗ s.t. i = precod(u) and j = mi+ precod(x),
0 otherwise.

The triplet (λ, C, γ ) is called the N-matrix representation of dimension n of counting
tree A(L).

Example 8 The N-matrix representation of the counting tree in Example 7 (Fig. 2b)
is the following: λ = (

1 0 0 0 0 0 0 0 0 0
)

, γ = (
0 0 0 0 0 0 0 1 1 1

)T ,

C(+) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 8 0 0 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C(◦) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C(−) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Definition 3 (Matrix representation of probabilistic trees)
Let K = [0, 1]. The probabilistic tree A(L) associated to the finite multiset of words
L is the given of the triplet (λ, P, γ ), where λ and γ are already given in Definition 1
and by notation (9), the morphism P is given by

Pi,j(x) =
⎧⎨
⎩

Nux

Nu
if ∃u ∈ X∗ s.t. i = precod(u) and j = mi+ precod(x),

0 otherwise.

The triplet (λ, P, γ ) is called the K-matrix representation of dimension n of probabi-
listic tree A(L).
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With the definition of the matrices {C(x)}x∈X, the coefficients of the matrices
{P(x)}x∈X can be performed as follows

Pi,j(x) =

⎧⎪⎪⎨
⎪⎪⎩

Ci,j(x)
( m∑

j=1

Ci,mi+j(xj)
)−1

if Ci,j(x) �= 0,

0 otherwise.

A word w is recognized by this tree if and only if it labels a path going from the
initial node (root) to a final node. Therefore,

Theorem 2 Let (λ, C, γ ) be the matrix representation of the weighted tree. Then

∀w ∈ X∗, λC(w)γ �= 0 if and only if w ∈ L.

In particular K = [0, 1], the probability of appearance of word w is

P(w ∈ L) = λP(w)γ .

Thus, the matrix representation (λ, M, γ ) of a weighted tree does the computations
in a simple way.

Example 9 From the matrices {C(x)}x∈{+,◦,−} in Example 8, the matrices {P(x)}x∈{+,◦,−}
are determined as follows

P(+) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0
0 0 5

8 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P(◦) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 4

5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P(−) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 3

8 0 0 0 0 0 0

0 0 0 0 0 1
5 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By using Theorem 2, the appearance probability of the word ++ ◦◦ is

P(++ ◦◦) = λP(++ ◦◦)γ = λP(+)P(+)P(◦)P(◦)γ = 1
2

.

3.5 Trees having longest prefix

Consider the following schema

A(L)←→ L σ−→ σL←→ A(σL), (24)

where A(L) (resp. A(σL)) is the tree associated with L (resp. σL). Where the tree
A(σL) represents the longest prefix of σL (see Sect. 2.3). We call A(σL) a Weighted
Longest Prefix Tree (WLPT).

Example 10 Let L given in Example 7 and let σ =
(

1 2 3 4
1 4 2 3

)
. The tree A(L) (resp.

A(σL)) associated to L (resp. σL) is given in Fig. 3.

We propose the LONGEST-PREFIX-TREE (L ∪ w) algorithm, as below. This
permits the insertion of a word into a longest prefix tree, to give a new longest prefix
tree. Suppose that at instant t one has the tree having the longest prefix u ∈ X∗ of L
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Fig. 3 Schema obtaining a WLPT A(σL)

with the permutation σ = [σ(1), . . . , σ(L)]. To insert a word w ∈ X∗ in this tree, it
is first necessary to permute this word by σ , to obtain w′ = σw. Hence, by notation
(2), we calculate l = d(w′, u). In the case l �= 0, one determines the longest prefix
u′ ∈ X∗ between u and w′ such that |u′| = l (note that |u′| ≤ |u|). The search for a new
permutation is as follows: by regarding l first components of σ , let us put

σ1 = [σ(1), . . . , σ(l)]. (25)

By leaving from the depth h = l + 1 to depth L of the counting tree, let

nh = max
x∈X

∑
u∈Xh−1

Nux. (26)

If there exists x ∈ X such that nh = Nε , then one returns the new longest prefix u′x by
concatenating product u′ with x. Hence, we then rearrange the numbers nl+1, . . . , nL
such that they appear in descending order nσ ′(l+1) ≥ · · · ≥ nσ ′(L) using the sorting
algorithm [15]. Let us put

σ2 = [σ ′(l + 1), . . . , σ ′(L)]. (27)

We return the new permutation by the concatenation of σ1 and σ2, i.e

σ = [σ1, σ2] = [σ(1), . . . , σ(l), σ ′(l + 1), . . . , σ ′(L)]. (28)

In the case l = 0, thus u′ = ε. One implements (26) with h = 1, . . . , L. And if there
exists x ∈ X such that nh = Nε , then one returns the new longest prefix u′x by
concatenating the product u′ with x and a new permutation σ = σ2.

Example 11 Let L = {+ +−◦, ◦ + +◦, ◦ + +◦} be the multiset (Fig. 4).

Theorem 3 Let L be the finite multiset of words over X. Let A(L) (resp. A(σL)) the
counting tree associated to L (resp. σL). Then

LP(σL) ≥ LP(L) and S(A(σL)) ≤ S(A(L)).

Proof By the permutation σ , σL having the longest prefix. That means, for any u, v ∈
L, by Proposition 1, one has d(σu, σv) ≥ d(u, v). Thus

LP(σL) =
∑

σu,σv∈σL
d(σu, σv) ≥ LP(L) =

∑
u,v∈L

d(u, v).
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a) b) c)

Fig. 4 The longest prefix trees. Tree (a) is longest prefix tree constructed on L by σ = [2 4 1 3]: the
longest prefix is u = +◦. After inserting the last word σ(−++◦), one obtained tree (b) with longest
prefix is u′ = +◦ and observed that n3(+) = 3 > n1(◦) = 2, then tree (c) is constructed from the tree
(c) by σ = [2 4 3 1]

Algorithm 4 LONGEST-PREFIX-TREE (L ∪ w)

1: Input: tree A(L), longest prefix u, permutation σ , a word w;
2: Insert(σw, A);
3: l← d(σw, u);
4: if l �= 0 then
5: determine left factor u′ between σw and u such that |u′| = l;
6: determine σ1 according to (25);
7: for depth h = l + 1 to depth L of tree do
8: determine nh = max

x∈X
∑

u∈Xh−1

Nux;

9: if there exists x ∈ X such that nh = Nε then
10: u′ ← u′x;
11: end if
12: end for
13: rearrangement nσ ′(l+1) ≥ · · · ≥ nσ ′(L);
14: return σ2 according to (27);
15: σ ← [σ1, σ2] according to (28);
16: else
17: u′ ← ε;
18: realize the loop 7-14 with l = 0;
19: σ ← σ2;
20: end if
21: return u′;
22: Output: tree A(L ∪ w), new longest prefix u′, new σ ;

Suppose that at the depth h of A(L) exists x ∈ X verifying (26). Hence, the tree A(σL)

obtained is rebuilt from A(L) by regrouping the sum
∑

ux∈Xh 1{Nux≥1} of nodes by
only one node. And one deduces then∑

σu∈X∗
1{Nσu≥2} +

∑
σu∈X∗

1{Nσu=1} ≤
∑

u∈X∗
1{Nu≥2}

+
∑

u∈X∗
1{Nu=1}.

From the formula (18), one has S(A(σL)) ≤ S(A(L)).
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4 Application: analysis of the DNA microarray data

In Sect. 3 we proposed the methods and algorithms of weighted prefix trees. In this
section, we apply these methods to manage and to analyze DNA microarray data.

4.1 Brief representation of DNA microarray technology

DNA microarray is a multidisciplinary technology used to measure simultaneously
the expression levels of thousands of genes under various conditions and provide
genome-wide insight. A DNA microarray (slide) is a microscope slide to which the
thousands of DNA fragments are attached. The DNA microarrays are hybridized with
fluorescently labelled cDNA prepared from total mRNA of studied cells. The cDNA
of the first cell sample is labelled with a green-fluorescent dye and the second with
a red-fluorescent dye [7, 13]. After hybridization, the DNA microarrays are placed
in a scanner to create a digital image of the arrays. The intensity of fluorescent light
varies with the strength of the hybridization. The measure of expression level of a
gene is determined by the logarithm of the ratio of the luminous intensity of the red
fluorescence IR to the luminous intensity of the green fluorescence IG, E = log2(

IR
IG

).
In this study, a change of differential expression of a gene between two cell samples
by a factor of greater than

√
2 was considered significant. Thus:

– If E ≥ 0.5, the gene is considered up-regulated in the second cell sample.
– If −0.5 < E < 0.5, the gene is considered no-regulated.
– If E ≤ −0.5, the gene is considered down-regulated.

Since some microarray experiments can contain up to 30, 000 target spots, the data
generated from a single array mounts up quickly. For extraction of biological and
medical informations from these data, the use of mathematics and software programs
is essential to aid the interpretation of the results. The interpretation requires discrete
and combinatoric modeling. This work used counting trees and probabilistic trees as
the tools to solve the following problems:

P1. storing and visualizing the DNA microarray data,
P2. computing the appearance probability of a slide,
P3. comparing the gene expression level of different slides in order to classify the

slides,
P4. identifying the characteristic slides: slides having the highest appearance proba-

bility,
P5. searching the lexicographic order of genes spotted on slides to obtain the common

profile of DNA microarray data.

4.2 Solving the problems P1–P5

Consider a collection of L genes across in N different measure experiments, the gene
expression profiles is the matrix E = (

Eij
)1≤i≤L

1≤j≤N , where Eij = log2(IRij/IVij) and IRij

(resp. IGij ) is the luminous intensity of the red (resp. green) fluorescence dye of spot
(gene) i in experiment j. The key idea is modeling the DNA microarray (slide profile)
as a sequence of symbolic information. In fact, the expression levels of a gene are
modeled as a finite alphabet whose size is the number of expression levels, in this
instance, three. Thus, a DNA microarray is viewed as a finite word over this alphabet,
and a collection of microarrays forms a multiset of words is called a DNA microarray
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language. In this study, we chose three symbols +, ◦ and − to represent the three
expression levels of a gene according to

– if Eij ≥ 0.5, the spot represents an up-regulated gene and symbolically encoded by
the symbol +,

– if −0.5 < Eij < 0.5, the spot represents a no-regulated gene and encoded by the
symbol ◦,

– if Eij ≤ −0.5, the spot represents a down-regulated gene and encoded by the
symbol −.

From this modeling, we obtain an alphabet X = {+, ◦,−} that describes three
expression levels of a gene. A slide profile is then represented by a ternary word of
length L over X. And a collection of N slide profiles is represented as the multiset,
noted L, of N ternary words of length L (Fig. 5).

In general, the encoding by symbol sequences permits to optimize the storage
(problem P1) by the use of the structure of prefix trees. The structure of WLPT
(ternary tree) is a essential tool for analyzing a collection of slide profiles (problem
P2–P5) by exploiting the weights (i.e. occurrence numbers) on the branches of trees.
In fact, by Algorithm 2 and Algorithm 4, we construct a WLPT associated to collection
of slide profiles by classifying all words of the multiset of words L in a structure of
weighted ternary tree according to their successive letters and their frequency labeled
on the adjacent transitions (see Example 7 and 12). With this structure, we classify
the informational expression between the slides by grouping the slides which have a
common expression profiles as follows: let x ∈ X be the labeled letter representing
the expression of a gene at the node q = precod(ux), where u is a prefix starting from
the root of tree. Let Nux be the number of occurrences observed for the letter x that
labelled on the transition from the node p = precod(u) to the node q. That means,
for each node and each depth of the weighted tree, we know that there are Nux slides
having the common expression profile described by the prefix ux. The prefix ux is also
called a motif of Nux slides. For understanding our approach and how the theoretical
tools in the preceding sections can really apply to extract biological information, we
give the following example.

Example 12 Let L =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1 g2 g3 g4 g5 g6 g7 g8
s1 + + + + + + + +
s2 + + + − − + + −
s3 − ◦ − ◦ ◦ ◦ − ◦
s4 − − − + + − − +
s5 + + + + + + + +

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

T

, be a symbo-

lic matrix representing the expression profile of 8 genes (g1, . . . , g8) in 5 conditions
(s1, . . . , s5). With the action of permutation σ = (

1 2 3 4 5 6 7 8
1 3 7 2 6 4 5 8

)
to L, the gene expres-

sion data is structured by the WLPT given in Fig. 6.

Fig. 5 Symbolic representation of DNA microarray data
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Fig. 6 WLPT of DNA microarray data

The left figure is the counting tree of 5 slide profiles. It represents the multiset L of
5 slide profiles. At the depth 5, the node 121 labels the word u = +++++ having the
occurrence number Nu = 3 which indicates that a group of 3 slides (s1, s2, s5) has the
commun profile on 5 up-regulated genes; at the depth 3, the node 39 labels the word
v = −−− having the occurrence number Nv = 2 which represents a group of 2 slides
(s3, s4) with the common profile is 3 down-regulated genes. The right figure is the
associated probabilistic tree. The slides 1 and 5 have the same appearance probability
of 2/5 that are considered as the slides having the highest appearance probability.
And then, these trees divide the data in various groups. For example, at the depth 5,
the WLPT gives three groups of slides.

Using the WLPT, the four analytic problems (P2–P5) proposed are solved as below:

1. For the problem P2, we calculate directly the appearance probability of a word in
two ways. The first way is to apply Theorem 2, the second is the use of (9):

∀u = xi1 . . . xih ∈ Xh, Pu =
h∏

l=1

Pqil−1 ,qil
= Nu

N
. (29)

By using a logarithmic scale for (29), we obtain

log Pu =
h∑

l=1

log Pqil−1 ,qil
= log Nu − log N. (30)

2. For the problem P3, we measure the contained information in the words according
to their prefixes as follows.

Proposition 4 By the notations (6,9,13), the informational semi-distance between
different words according to the mass µ is

∀u, v ∈ Xh, dµ(u, v) = |µ(u)− µ(v)|. (31)

The semi-distance between different words according to probability is

∀u, v ∈ Xh, dP(u, v) = |Pu − Pv|. (32)

And the informational entropy semi-distance according to classic method,

∀u, v ∈ Xh, dH(u, v) = |H(u)−H(v)|. (33)
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Table 1 Parameters of weighted trees

Tree�parameters S LP LP H

A(σL) 93383 3004 3004/50 243

Proposition 5 Let u, v ∈ X∗. The prefix distance between u and v, note dpref (u, v),
is defined by

dpref : X∗ × X∗ −→ N

(u, v) 
−→ dpref (u, v) := |u| + |v| − 2d(u, v),

where d(u, v) is the length of longest prefix of u and v given by (2). For all u, v ∈ X∗,
with this definition, the prefix distance dpref (u, v) is a metric.

Example 13 Let w1 = ++◦−−+, w2 = ++◦++−, w2 = +− ◦−+− be three
words representing three slides. We have dpref (w1, w2) = 6 and dpref (w1, w3) =
dpref (w2, w3) = 10. Thus w1 and w2 are more similar than w1 and w3. Then, two
words w1 and w2 may be classified in the same group.

3. For the problem P4, we search the expression sequence w (slides w) which have
the maximum appearance probability P(w) by Algorithm 3; we thus obtain cha-
racteristic slides.

4. Problem P5 is solved by the Algorithm 4 of Sect. 3.5. This permutation method
permits our searching the order of genes spoted on a slide to establish the charac-
teristic slides which have the longest common expressions.

4.3 Experimental results

We applied the weighted tree for the Apoptosis microarray collection provided by the
Functional Genomic Platform laboratory of Lille 2. In this experiment, a collection
of 50 Apoptosis microarrays of colon cancer cells issuing from three series of patients
is studied. Each Apoptosis microarray contains 1920 spots representing 1920 genes.
As noted above, a ternary word obtained by our modeling has the length L = 1920.
The interpretation of these experimental results is illustrated in Figs. 7–9.

4.4 Some discussions

This paper presents the theoretical concepts from discrete mathematics based on
algorithmics and combinatorics aspect to the extremely important problem for contem-
porary applied research—the transcriptomic data analysis. The objective of this origi-
nal contribution is to develop the informatic tools including the novel data structure
and novel algorithms for analyzing the DNA microarray data.

The first part of this work consists of develop the data structure that permits to
store and manage efficiently an enormous mass of microarray data. Recently, the
microarray data is usually stored by a matrix E ∈ ML,N containing L gene profiles
across N slides. Nowadays this type of storage is not suitable. Because the capacity
of memory is very considerable if N, L ≫ 1 and the computing time is not optimal
for mining the complex data. In fact, using matric storage, we need N × L memory
space to store the data and the research of an object of size L in this matrix is in
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Fig. 7 Visualization of the first depths of counting tree. The counting tree gives the following
information: each depth of the tree represents the expression of a gene. At the first depth, the gene
NM-002883 is up-regulated on 47 (94%) slides and no-regulated on 3 (6%)slides. At the depth 2 and 3
there are two genes NM-018443 and NM-001938, that are up-regulated on 45 (90%) slides, etc....These
genes may be viewed as the group of significant candidate genes of 50 Apoptosis microarrays

O(NL). In addition, the visualization by a matrix does not make possible to release
any analysable result, for example, the common informations of a maximum of the
slide profiles. To overcome these difficulties, we introduced the structure of WLPT.
Using the WLPT, the complex data of DNA microarrays is structured and indexed
such that the common informations between slides will be represented by an internal
node associated to a prefix. The research of an object of size L in WLPT is in O(L).
By this way, the WLPT is considered as an engine of the request and the research of
informations.

The next essential part is to propose the novel algorithms in order to iden-
tify a set of differential regulated genes. Using the WLPT given in Fig. 7, we ob-
serve that there are 12 up-regulated genes on least 36 (72%) slides: the first depth
gives the gene NM-002883 up-regulated on 47 slides; the 2nd and 32d depth gives
the genes NM-018443 and NM-001938 up-regulated on 45 slides, etc.... We have
tried to identify the function of these genes using the genbank tool of site web
http://www.ncbi.nlm.nih.gov/Genbank: 8 genes are identified and described in the
figure; there are 4 genes unknown ("?"). These 12 genes form then a group of
co-up-regulated genes along over 36 conditions. This group of genes may be vie-
wed as a group of significant candidate genes of 50 Apoptosis microarrays (may be
viewed as the important genes of colon cancer cell). Therefore, the WLPT provides a
new tool for identifying groups of co-regulated genes across certain conditions known
well as the bi-clustering problem. The research of a maximal bi-cluster is known as
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Fig. 8 Construction result of weighted tree. The first graph represents the weight of 50 leaves of the
counting tree. Each depth of the tree gives the number of microarrays having a common expression.
The x-axis is the depths of tree and the y-axis is the occurrence number between the slides: at the
depth 100, for example, there are 7 similar slides on the 100 first gene expressions. The second graph
represents the frequency of 50 leaves of the corresponding probabilistic tree. The slides having a
maximal probabilistic prefix are represented by a dark line. These results solved the problem P2

NP-complete problem [17]. Once the WLPT constructed, a maximal bi-clusters may
be identified exactly in linear time [20].

The results described in Figs. 8 and 9 allow us extract the characteristics by using the
appearance probability. By descending to a fixed depth, we compute the probabilistic
prefix of the slides and classify those into the different groups by the use of the
informational semi-distance (Proposition 4). This method returns then the hierarchical
clustering using WLPT which is an unsupervised learning technique and it does not
require a priori knowledge of cluster number. This criterion is very important in DNA
microarray data analysis since the characteristics of the data are often unknown. Thus,
WLPT open a new direction to examine the data-mining step in the process of KDD
to understand the characteristics of DNA microarray data. In other words, they permit
the extraction of hidden biological and medical informations from the mass of data.

In the present work, we performed the analysis of slide profiles to extract medical
informations—the determination of characteristic slides (characteristic molecular por-
traits) of a pathology. With a given small dataset, the results described in this paper
introduced thus only a novel methodology and a theoretical aspect. Our ambition in
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Fig. 9 Classification results of DNA microarrays. The graphs represent the appearance probability
of prefixes at each depth of the tree. For example, at the depth 100 of tree, we observe there are 7
slides which are similar on 100 genes with the probability of prefixe of 0.14; at the depth 150 of tree,
we observe there are 6 similar slides with the probability of prefixe of 0.12. At the depth 243 there
are 2 slides which are similar on 243 gene expression with a probability of 0.04. They are considered
as the characteristic slides of the sample studied. Among 243 first genes, there are 232 up-regulated
genes, 11 no-regulated genes. This result solved two problems P3 and P4

the future is that the combinatoric method based on WLPT will offer an effective tool
for the analysis of DNA microarray data and, in particular, for the diagnosis assisted
by the computer. Nevertheless, we would need, for all that, to have the large quanti-
ties of samples and to make the reliable and reproducible quantitative measurements.
That is not nowadays, because the technique of DNA microarray is still expensive
and several technical points must to be improved. In addition, the databases of DNA
microarray are not validated (homogenized) between the various platforms of biochip
yet, as the link with the clinical data for example.

Using the same structure of WLPT by considering L gene profiles as L words of
length N, the gene expression profiles will be analyzed to identify biological informa-
tions [19,20] in the transcriptomic analysis process. In fact, the three problems of the
transcriptomic analysis are solved by the use of WLPT. The first is the identification of
differential expressed genes: identifying the genes whose their expressions is modified
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during a normal or pathological cellular process. With their differential expressions,
one makes a hypothesis that these genes are implied in this process; The second is
the studies of expression profiles. Starting from various conditions, it is possible to
establish a common expression profile of which relates to a set of genes of the genome.
One makes a hypothesis that the genes presented by the same profile have the same
function; The last problem is to determine genes co-regulated under certain specific
conditions. It is an essential step for constructing a regulation networks or a biology
system [5].

Finally, the algorithmics and combinatorics approaches presented in this paper lead
to implant an operational software entiled WLPT@DNA-ARRAY where its kernel
is the WLPT and the algorithms of extraction on this tree. The software will answer
some problems of the management, the storage and the visualization. It provides
an effective tool to compare and classify the DNA microarray data. This software
permits thus to make an evidence of the analysis results (see http://www.genopole-
lille.fr/spip/spip.php?article44).

5 Conclusions and perspectives

The structure of weighted trees is introduced to analyze DNA microarray data. The
collection of DNA microarrays was modelled by ternary weighted trees, which are
finite weighted acyclic automata. These trees are used to store microarray data. Once
the number of slides is large enough, we can deduce the characteristic slides of a
microarray collection. The probabilistic tree enables the computation of the appea-
rance probability of a microarray. The longest prefix tree is used to establish the
characteristic slides that have the longest common expression and also the determine
the groups of genes that are candidates of a pathologic condition. Encouraged by
these preliminary results, we intend to construct further diagnostic trees, using these
methods. We anticipate that with further refinement these methods will be extremely
valuable in analyzing the mass of DNA microarray data, with possible significant
clinical applications.
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